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A multicomponent and multiphase model with fluid motion is developed. The model is used to study reactive
wetting in the case where concentration change of the spreading liquid and the substrate occurs. With the
introduction of a Gibbs energy functional, the governing equations are derived, consisting of convective
concentration and phase-field equations which are coupled to the Navier-Stokes equations with surface tension
forces. The solid substrate is modeled hydrodynamically with a very high viscosity. Arbitrary phase diagrams,
surface energies, and typical dimensionless numbers are some input parameters into the model. An axisym-
metric model with an adaptive finite element method is utilized. Numerical simulations were done revealing
two stages in the wetting process. First, the convection-dominated stage where rapid spreading occurs. The
dynamics of the wetting is found to match with a known hydrodynamic theory for spreading liquids. Second,
the diffusion-dominated stage where we observed depression of the substrate-liquid interface and elevation of
the contact line region.

DOI: 10.1103/PhysRevE.77.056313 PACS number�s�: 47.70.�n, 02.70.�c, 47.50.Cd, 47.55.N�

I. INTRODUCTION

Many technological processess involve the spreading of a
molten material over a solid substrate. Typical examples in-
clude liquid phase sintering, and soldering or brazing of ce-
ramics. The dynamics of the wetting is an important aspect,
and the final outcome of the microstructure could be largely
affected whether the spreading is reactive or nonreactive.

Reactive wetting involves a chemical change and/or dif-
fusion of chemical species. There are two cases: �i� a con-
centration change of the spreading liquid and the substrate
occurs, and �ii� a new phase or phases form between the
liquid and the substrate. Braun et al. �1� presented a lubrica-
tion theory for reactive spreading of a thin drop. They ap-
plied equations governing the velocity, temperature, and con-
centration fields in the drop and the height of the drop is an
unknown variable. In addition, the contact line was assumed
to move according to a known hydrodynamic law for nonre-
active spreading of liquids. Warren et al. �2� also presented a
model for the first case of reactive wetting. They used a
diffusion or fluid flow analysis to predict the change in shape
of the liquid-solid interface. The motion of the triple line
along the substrate is driven by concentration gradients and
geometrical considerations. Their simulation results showed
the depression of the substrate-liquid interface, which is
similar to the experiment they and other researchers have
performed �3� and to the molecular dynamics simulations
done by Webb and Grest �4�. More recently, Yin et al. �3�
studied experimentally the first case in the Bi-Sn system.
Their results showed certain similarities to a universal corre-
lation for partially nonreactive wetting systems.

The second case was studied experimentally by Landry et
al. �5� and focused on the dynamics of reactive wetting, spe-
cifically on the question of surface energy parameters deter-
mining the final equilibrium contact angle in reactive liquid-

solid systems. In the work of Kalogeropoulou et al. �6� on
Ag spreading on SiC, their results showed that the final equi-
librium contact angle is characteristic of the reaction product
�graphite� and not of the initial substrate, where in this case
the contact angle on the reaction product is higher than the
contact angle on the substrate. Thus, they argued that reac-
tivity does not necessarily promote spreading. Another inter-
esting experimental observation is the development of a
ridge at the triple line in the systems studied by Saiz et al.
�7,8�.

The wetting phenomena can be viewed as a free boundary
problem where the interface between the two fluids is de-
formable and free to change its shape in order to minimize
the surface energy. The problem can be modeled with sharp-
interface or diffuse-interface methods. Some common sharp-
interface methods include the front-tracking �9�, level set
�10�, and the volume-of-fluid method �11�. Diffuse-interface
methods consider the interface between the two fluids to
have a nonzero thickness endowed with physical properties
such as surface tension. For a review of diffuse-interface
models applied to different interfacial phenomena, see �12�.
Phase-field models are a particular type of diffuse-interface
models that are based on the free energy as a function of
state variables, an idea that can be traced to van der Waals
�13�. One notable feature of such models is that the force
singularity arising in the classical model of moving contact
lines as pointed out by Huh and Scriven �14� is no longer
present due to mass transfer across the interface �for details
see Seppecher �15��.

Different diffuse-interface models such as phase-field
models for multiphase systems controlled by diffusion have
been proposed by a number of workers. For example, a poly-
crystalline binary model was developed by Chen et al. �16�
using a Ginzburg-Landau polynomial for the free energy.
Polycrystalline binary systems in general have been modeled
by many researchers �17–19�. Grafe et al. �20� extended the
binary system to a multicomponent system. Instead of repre-
senting every grain and/or phase with a phase-field variable,
Warren et al. �21� developed a polycrystalline model by in-*walter@mech.kth.se.
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troducing an order parameter representing a rotation of the
crystallographic orientation of a grain. Garcke et al. �22�
presented a nonisothermal phase-field model for alloys with
multiple components and phases without convection. They
discussed possible choices for the gradient and bulk energies
in the free energy density and related their model to classical
sharp interface models. With these models, numerical simu-
lations of moving grain boundaries, triple junctions, and
phase transformations can be performed. A phase-field model
that includes fluid flow has been proposed by Nestler et al.
�23� to simulate solidification of a monotectic alloy with con-
vection. Sekerka et al. �24� also developed a phase-field
model for solidification of a multicomponent system includ-
ing fluid motion, treating the solid phase as very viscous. For
reviews of phase-field models, see �25,26�.

In this paper, we present a multicomponent and multi-
phase model with fluid motion to study the first case of re-
active wetting; that is, a change in concentration between the
spreading liquid and the substrate occurs without forming a
new phase between them. More specifically, we model the
case of sitting droplets �2,3� as opposed to running droplets
demonstrated in nonmettalurgic systems �27–29�. The model
is based on our previous work �30,31�. The system consists
of three substitutional elements and three phases. With the
introduction of a Gibbs energy functional, the governing
equations are derived, consisting of convective composition
and phase-field equations which are coupled to the Navier-
Stokes equations with surface tension and gravity forces. The
solid substrate is modeled as a liquid with very high viscos-
ity. This allows for the deformation of the substrate-liquid
interface as a result of the kinetics involved in reactive wet-
ting. The system is nondimensionalized and typical dimen-
sionless parameters are identified, namely, the Reynolds
number Re, Capillary number Ca, Bond number Bo, Péclet
number Pe, etc. Similar to �22�, our model also allows for
arbitrary phase diagrams as well as surface energies.

The present paper is organized as follows: In Sec. II, we
formulate the governing equations and a dimensionless sys-
tem is derived. Next, a numerical treatment of the system of
equations is discussed followed by a discussion of the choice
of parameters. In Sec. V, results are presented and the influ-
ence of surface energies, initial compositions, etc., to the
dynamics of the wetting process is discussed.

II. MATHEMATICAL FORMULATION

The total Gibbs energy G of a ternary system �see Fig. 1�
of substitutional elements A, B, and C with three phases, �
�spreading liquid�, � �substrate�, and � �medium� is given by

G = �
�
�Gm�xA,xB,xC,��,��,��,T�

Vm
+ �

i=�,�,�

�i
2

2
���i�2�d� ,

�1�

where Vm is the molar volume and xA,B,C is the mole fraction
of A ,B ,C atoms with xA+xB+xC=1. Also, �i’s are phase-
field variables with ��+��+��=1 and vary smoothly be-
tween 0 and 1, �i’s are coefficients related to the thicknesses
and surface tensions of the interfaces, and Gm denotes the
molar Gibbs energy,

Gm = �1 − P���� − P�����Gm
� + P����Gm

� + P����Gm
�

+ W����
2��

2 + W����
2�1 − �� − ���2

+ W����
2�1 − �� − ���2 + W�����

2��
2�1 − �� − ���2,

�2�

with the smoothed step function P��i�=�i
3�10–15�i+6�i

2�,
the same as in conventional phase-field formulations �18,32�.

Since in the systems of study here do not have miscibility
gap, i.e., are not prone to demixing or spinodal decomposi-
tion, the gradient terms in xA,B,C are not important and will
not influence the results even if they are included. Similar
approaches have been done by Folch and Plapp �33� in their
ternary model that is applied to quantitative simulations of
solidification.

For simplicity, we assume an ideal solution for Gm
�,�,�. For

a ternary system we can then write the molar Gibbs energy
as

Gm
i = xA

oGA
i + xB

oGB
i + �1 − xA − xB�oGC

i + RT�xA ln xA

+ xB ln xB + �1 − xA − xB�ln�1 − xA − xB��, i = �,�,�

�3�

where, for example, oGA
� is the molar Gibbs energy of an A

lattice in the � phase without B and C atoms.
Considering an isothermal, viscous, and incompressible

system, the governing equations are the following:
�i� convective concentration equations,

1

Vm
� �xA

�t
+ u · �xA� = − � · JA,

FIG. 1. The axisymmetric model where each phase �, �, and �
contains a fraction of substitutional elements A, B, and C. The gov-
erning equations are expressed in cylindrical coordinates �r ,z�. The
angle �a is defined as the apparent contact angle and the 	’s are
interfacial energies. The triple junction is not assumed or forced to
remain at the initial substrate height although it stays there during
the early stage of spreading.
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1

Vm
� �xB

�t
+ u · �xB� = − � · JB, �4�

with natural boundary conditions n ·JA=0 and n ·JB=0;
�ii� convective Allen-Cahn equations for the phase-field

variables which are nonconservative,

���

�t
+ u · ��� = − M��


G


��

,

���

�t
+ u · ��� = − M��


G


��

, �5�

where M��
and M��

are the kinetic mobilities and with natu-
ral boundary conditions n ·���=0 and n ·���=0; and

�iii� and the Navier-Stokes equations with added surface
tension and gravitational forces,

����� �u

�t
+ u · �u� = − �p + � · ������u + �uT�

− �
i=�,�,�

�i � � 
G


�i
� + ����g,� · u = 0.

�6�

For the surface tension forcing, we follow the derivation of
Jacqmin �34� �see the Appendix A�.

The diffusion flux of solutes JA and JB are given by the
Onsager linear law of irreversible thermodynamics,

JA = − LAA � � 
G


xA
� − LAB � � 
G


xB
� ,

JB = − LAB � � 
G


xA
� − LBB � � 
G


xB
� , �7�

where the chemical mobilities are given by

LAA = �1 − xA�2xAMA��� + xA
2xBMB���

+ xA
2�1 − xA − xB�MC��� ,

LBB = xB
2xAMA��� + �1 − xB�2xBMB���

+ xB
2�1 − xA − xB�MC��� ,

LAB = − �1 − xA�xAxBMA��� − xAxB�1 − xB�MB���

+ xA�1 − xA − xB�xBMC��� , �8�

and


G


xj
=

1

Vm

�Gm

�xj
, j = A,B . �9�

MA���, MB���, and MC��� are the atomic mobilities of A, B,
and C, respectively.

The phase-field equation for the � phase becomes

���

�t
+ u · ��� = − M��

	 1

Vm

P������xA�oGA

� − oGA
��

+ xB�oGB
� − oGB

�� + �1 − xA − xB�

�oGC
� − oGC

��� + 2W������
2

+ 2W�����1 − �� − ����1 − 2�� − ���

− 2W����
2�1 − �� − ���

+ 2W�������
2�1 − �� − ����1 − 2�� − ����

− ��
2�2�� + ��

2�2�1 − �� − ���� , �10�

Note that the kinetic parameter M�i
is related to the normal

grain-boundary mobility M �35� as M�= 0.235M
Lc

, where Lc is
the characteristic length.

Similar to Cahn and Hilliard �36�, one may derive the
following equations for the interfacial energy and thickness,
respectively:

	 = �
0

1

� 2

Vm
	�Gm − Gm

phase�

− �
j=1

n−1 � �Gm

�xj
�

phase

��xj − xj�phase���1/2

d� , �11�

and


2 = �2Vm

2 	�Gm − Gm
phase�

− �
j=1

n−1 � �Gm

�xj
�

phase

��xj − xj�phase��
max

−1

. �12�

In the practical calculation, the “phase” stands for � when
evaluating 	�� and 
�� and � when evaluating
	�� , 
�� , 	��, and 
��.

Now, define characteristic scales

ũ =
u

Uc
, x̃ =

x

Lc
, t̃ =

t

Tc
=

tLc

Uc
, p̃ =

pLc

�cUc
, �13�

and introduce characteristic surface tension 	c and interface
thickness 
c. Also define dimensionless parameters,

�A
� =


c�
oGA

� − oGA
��

	cVm
, �B

� =

c�

oGB
� − oGB

��
	cVm

,

�C
� =


c�
oGC

� − oGC
��

	cVm
, �A

� =

c�

oGA
� − oGA

��
	cVm

,

�B
� =


c�
oGB

� − oGB
��

	cVm
, �C

� =

c�

oGC
� − oGC

��
	cVm

,
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�A
� =


c
oGA

�

	cVm
, �B

� =

c

oGB
�

	cVm
, �C

� =

c

oGC
�

	cVm
,

W̃�� =
W��
c

	cVm
, W̃�� =

W��
c

	cVm
, W̃�� =

W��
c

	cVm
,

W̃ =
W���
c

	cVm
, Ṽ =


cRT

	cVm
,

�̂�
2 =

��
2


c	c
, �̂�

2 =
��

2


c	c
, �̂�

2 =
��

2


c	c
,

Pe��
=

Uc
c

M��
	cLc

, Pe��
=

Uc
c

M��
	cLc

, Cn =

c

Lc
,

and dropping the tildes yields the nondimensional version of
Eq. �10� as follows:

���

�t
+ u · ��� = −

1

Pe��

�
P������xA�A
� + xB�B

� + �1 − xA − xB��C
�� + 2W������

2 + 2W�����1 − �� − ����1 − 2�� − ���

− 2W����
2�1 − �� − ��� + 2W����

2�1 − �� − ����1 − 2�� − ���� − �̂�
2Cn2�2�� + �̂�

2Cn2�2�1 − �� − ���� .

�14�

Similarly,

���

�t
+ u · ��� = −

1

Pe��

�
P������xA�A
� + xB�B

� + �1 − xA − xB��C
�� + 2W����

2�� − 2W����
2�1 − �� − ��� + 2W�����1 − �� − ���

�1 − �� − 2��� + 2W��
2���1 − �� − ����1 − �� − 2���� − �̂�

2Cn2�2�� + �̂�
2Cn2�2�1 − �� − ���� . �15�

For the concentration equations,

�xA

�t
+ u · �xA = � · ��1 − xA�2xBMA��� + xA

2xBMB��� + xA
2�1 − xA − xB�MC����� �2Gm

�xA
2 � xA +

�2Gm

�xA � xB
� xB +

�2Gm

�xA � ��

� ��

+
�2Gm

�xA � ��

� ��� +
1

Vm
2 �− �1 − xA�xAxBMA − xAxB�1 − xB�MB + xA�1 − xA − xB�xBMC�� �2Gm

�xB
2 � xB

+
�2Gm

�xB � xA
� xA�+

�2Gm

�xB � ��

� �� +
�2Gm

�xB � ��

� ����� . �16�

Define dimensionless parameters,

Pe =
UcLc

McRT
, M̃A��� =

MA���
Mc

, M̃B��� =
MB���

Mc
, M̃C��� =

MC���
Mc

, �̂A
� =

oGA
� − oGA

�

RT
,

�̂B
� =

oGB
� − oGB

�

RT
, �̂C

� =
oGC

� − oGC
�

RT
, �̂A

� =
oGA

� − oGA
�

RT
, �̂B

� =
oGB

� − oGB
�

RT
, �̂C

� =
oGC

� − oGC
�

RT
,

and dropping the tildes,

�xA

�t
+ u · �xA =

1

Pe
� · ��1 − xA�2xBMA��� + xA

2xBMB��� + xA
2�1 − xA − xB�MC����� 1 − xB

xA�1 − xA − xB�
� xA +

1

1 − xA − xB
� xB

+ P�������̂A
� − �̂C

�� � �� + P�������̂A
� − �̂C

�� � ��� + �− �1 − xA�xAxBMA��� − xAxB�1 − xB�MB���

+ xA�1 − xA − xB�xBMC����� 1

1 − xA − xB
� xA +

1 − xA

xB�1 − xA − xB�
� xB + P�������̂B

� − �̂C
�� � ��

+�P�������̂B
� − �̂C

�� � ����� . �17�

Similarly,
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�xB

�t
+ u · �xB =

1

Pe
� · �− �1 − xA�xAxBMA��� − xAxB�1 − xB�MB��� + xAxB�1 − xA − xB�MC����

� 1 − xB

xA�1 − xA − xB�
� xA +

1

1 − xA − xB
� xB + P�������̂A

� − �̂C
�� � �� + P�������̂A

� − �̂C
�� � ���

+ �xAxB
2 MA + xB�1 − xB�2MB + xB

2�1 − xA − xB�MC�

	 1

1 − xA − xB
� xA +

1 − xA

xB�1 − xA − xB�
� xB + P�������̂B

� − �̂C
�� � �� + P�������̂B

� − �̂C
�� � ���� . �18�

For the Navier-Stokes equations, we introduce characteristic
scales and define dimensionless parameters,

Re =
�cUcLc

�c
, Ca =

�cUc

	c
, Bo =

�cgLc
2

	c
.

Then,

Re ����� �u

�t
+ u · �u� = − �p + � · ������u + �uT�

−
1

Ca

1

Cn �
i=�,�,�

�i � � 
G


�i
�

+
Bo

Ca
����g . �19�

The Reynolds number is the ratio between the inertial and
viscous forces. The capillary number gives the ratio between
the viscous and surface tension forces, while the Bond num-
ber is the ratio between the gravitational and surface tension
forces. We have added the gravity forces in the formulation
but they will be neglected in the succeeding numerical simu-
lations.

We model the mobilities �Mj’s�, density ���, and viscosity
��� functions by

Mj��� = Mj
��� + Mj

��� + Mj
��1 − �� − ���, j = A,B,C ,

���� = ���� + ���� + ���1 − �� − ��� ,

����

= ����� + ���1 − �� − ��� if �� � 0.8

�� + 0.5��� − ��� 	1 + tanh�2���� − 0.8�
0.6

��, else. �
�20�

The viscosity function given allows us to model solid phases
with high viscosity.

III. NUMERICAL TREATMENT

The numerical simulations were carried out using the
FemLego �37�, an open source symbolic tool to solve partial
differential equations with the adaptive finite element

method. We consider an axisymmetric model where the ro-
tational symmetry is around the vertical axis �see Fig. 1�.

The boundary conditions given for the composition and
phase-field equations are natural boundary conditions. So,

(b)

(a)

FIG. 2. The adaptive mesh at two different times with a super-
imposed contour plot of the phase-field variables.
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taking the variational formulation of the partial differential
equations and applying integration by parts, the boundary
integrals will vanish. Both the composition and phase-field
equations are discretized in space using piecewise linear
functions. The resulting linear systems are solved using the
generalized minimum residual method. The Navier-Stokes
equations are solved using a projection method by Guer-
mond and Quartapelle �38� with an added pressure stabiliza-
tion term. The Navier-Stokes equations are also discretized
in space using piecewise linear functions and the linear sys-
tems are solved using the conjugate gradient method.

Since the model requires the interface to be resolved, the
use of adaptivity is essential. An ad hoc error criterion is
used to ensure mesh resolution along the vicinity of the in-
terface �see Fig. 2�. The mesh adaptivity is implemented as
follows: at each mesh refinement step, an element K is
marked for refinement if the element size h�hmin �the mini-
mum h allowed�, and does not satisfy the following error
criterion:

�H�a − ��i�x,t� − 0.5���L1�K� � TOL, �21�

where H�·� is the Heaviside step function, a is a constant
�here we used a=0.45�, and TOL is a given tolerance. If an
element satisfies the error criterion, it is marked for derefine-
ment unless it is an original element. At the next refinement
step, elements containing hanging nodes are marked for re-
finement. The refinement or derefinement stops if and only if
no element is marked for refinement or derefinement.

IV. INPUT PARAMETERS

A. Phase diagram

The model presented allows for arbitrary phase diagrams,
such as the one shown in Fig. 3, which was generated using
Thermo-Calc software �44�. The phase diagram is idealized
with the molar Gibbs energy �oGj

i� of an i lattice in a j phase
without the other atoms, to be of the same order of magni-
tude as R�T �gas constant R, temperature T�. The phase dia-
gram is also presented in a nondimensional form and for
generality does not represent one particular system or mate-
rial. This system has a very low component of both A and B
in the � phase �medium� mimicking a void. The � phase
�spreading liquid� contains a higher amount of A than B and
the � phase �substrate� contains mostly B. Although the sub-
strate is usually of pure material and the medium is vapor in
many dissolutive systems, we defer a detailed comparison
with such systems in succeeding work. Our aim is to present
a diffuse-interface model that can be used to analyze reactive
wetting as a process controlled by diffusion and fluid flow.

The phase diagram in Fig. 3 shows the equilibrium com-
position in the � , �, and � phase. In this paper, we examine
two cases for the initial composition, first, using the equilib-
rium composition as an initial condition for the concentration
variables xA and xB, and second, an off-equilibrium initial
composition, i.e., represented by dots in Fig. 3. More specifi-
cally,

EIC �equilibrium initial composition�:

composition of A: �0.5,0.07,0.03� ,

composition of B: �0.26,0.69,0.04� ,

OIC �off-equilibrium initial composition�:

composition of A: �0.73,0.07,0.03� ,

composition of B: �0.03,0.69,0.02� .

The entries in the A composition’s �or B’s� correspond to the
mole fraction of A �or B� in the � , �, and � phases, respec-
tively.

B. Surface energies

Another set of input parameters are the surface energies
and interface thicknesses. Here, we examine three cases. See
Table I for the input parameters and Table III for the corre-
sponding interfacial energies using Eq. �11� �see Appendix B
for the dimensionless expressions�.

TABLE I. Surface energy input parameters.

W�� W�� W�� �̂h
2a �̂�

2 �̂�
2

SE1 6.890 8.559 17.912 0.041 2.401 2.520

SE2 6.890 8.559 13.906 0.542 1.900 2.019

SE3 6.890 8.559 8.438 1.225 1.217 1.335

FIG. 3. �Color online� Calculated phase diagram of an arbitrary
A−B−C system at 1527 °C. The three crosses and dots represent
the initial composition in the � , �, and � phases used for the EIC
and OIC cases, respectively.
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C. Choice of other parameters

The input Ca number is the nominal capillary number
Ca= ��cUc� / �	c�, where Uc is the characteristic velocity.
However, there is also an actual or effective capillary number
Ca�= ��cU� / �	c�, where U is the actual wetting speed. Now,
if we set Ca=1, this means Uc=	c /�c and the actual Ca�

becomes U /Uc, which is the dimensionless wetting speed.
Inertial effects are assumed low, so Re=1.0. The �’s corre-
spond to the phase diagram selected �see Table II�. Following
�18�, we choose the parameter W to be sufficiently large in
order to properly calculate each of the i / j-surface energies
with Wij by locally suppressing the foreign third phase. The
mobility in the � phase �substrate� is much smaller than in
the � �liquid� and � �medium� phases. The density of the
substrate is the same as the spreading liquid and both are ten
times greater than the medium. Moreover, the viscosity of
the substrate is 105 times higher than the liquid and the me-
dium.

We note here that the parameters in Tables I and II are not
chosen randomly but represent reasonable physical situa-
tions. In general, we consider capillary-driven laminar flows.
For example, the Reynolds number Re being the ratio be-
tween the inertial and viscous forces, is assumed to be of
order unity or less, typical in most reactive wetting systems.
The capillary number provides the ratio between the viscous
and capillary forces and is also assumed to be of order unity
or less. Two sets of diffusion parameters are used and they
relate the ratio between the convective and diffusive mass
transport.

V. RESULTS AND DISCUSSION

We observed two stages in the wetting process. First, the
convection-dominated stage where rapid spreading occurs
and the drop approaches a quasi-steady state, and second, the
diffusion-dominated stage where diffusion-controlled mecha-
nisms are observed such as depression of the substrate-liquid
interface, elevation of the contact line region, and possibly

shrinkage or expansion of the spreading liquid depending on
the parameters chosen. Similarly, the experimental work of
Shen et al. �39� on high-temperature reactive wetting identi-
fied three stages in the wetting process: a fast spreading
stage, followed by a transition stage, then a long and pro-
gressive spreading stage.

A. Convection-dominated stage

This stage is manifested by rapid spreading. Figure 4
shows contour plots �level 0.5� of the phase-field variables
with EIC for three cases: �a� SE1, �b� SE2, �c� SE3, at times
t=0, 8 , 15, and 100 �marked 0,1,2,3�, respectively. In Fig.
4�a�, the liquid drop initially starts with a spherical shape
�marked 0�. The drop rapidly spreads and at time t=1, the
velocity profile is given in Fig. 5�a� showing a vortex with a
center along the interface. The figure also shows zero veloc-
ity in the substrate, which was modeled by high viscosity.
Then at t=8 �marked 1 in Fig. 4�a��, the drop makes an
apparent contact angle of �a=93° with drop base radius R
=1.0. Apparent contact angles were measured with an image
processing software IMAGEJ �45� using contour plots �level
0.5� of the phase-field variables in which tangent lines are
drawn at the “macroscopic foot” of the spreading liquid
�with the tangent lines coinciding with the corresponding
point where the contour lines start to separate neglecting the
inner structure of the contact line region in the measure-
ment�. At time t=15 �marked 2�, the drop further spreads and
�a=68° with R=1.35. Then at t=100, the drop makes an
apparent contact angle �a=30° and R=1.86. The velocity
profile is given in Fig. 5�b� with a maximum velocity of
0.0015, much slower compared to a maximum velocity of
0.1135 at t=1. The change of the apparent contact angle with
respect to time is plotted in Fig. 6 suggesting that the wetting
is fast where the apparent contact angle decreases rapidly
and then slows down upon reaching a quasisteady state. This
is similar to the rapid isothermal spreading of a drop in con-
tact with a substrate observed experimentally by Voitovich et
al. �40�.

TABLE III. Comparison between the quasisteady equilibrium contact angle �m using Young’s equation
and the measured apparent contact angle �a at t=100.

	�� 	�� 	�� �m �a

SE1 0.949 0.792 1.589 36° 30°

SE2 0.949 0.785 1.242 68° 58°

SE3 0.949 0.791 0.795 101° 98°

TABLE II. Base set of parameters.

Ca=1.0 �̂A
�=−2.673 �A

�=−0.571 �A
� =0.286 MB

�=1.0 ��=10

Re=1.0 �̂B
�=−2.005 �B

�=−0.429 �B
� =0.286 MB

�=0.001 ��=10

Pe=104 �̂C
� =1.336 �C

� =0.286 �C
� =−0.143 MB

� =1.0 ��=1

Pe��
=100 �̂A

�=−0.668 �A
�=−0.143 MA

�=1.0 MC
� =1.0 ��=1

Pe��
=100 �̂B

�=−3.007 �B
�=−0.643 MA

�=0.001 MC
� =0.001 ��=105

W=600 �̂C
� =1.336 �C

� =0.286 MA
� =1.0 MC

� =1.0 ��=1
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This case corresponds to 	��=0.949, 	��=0.792, and
	��=1.589 using Eq. �11� �see Table III�. Using the Young’s
equation �41�, 	�� cos �m=	��−	��, we found that �m
=36° compared to the measured apparent contact angle of
�a=30° at t=100. With SE2, the corresponding quasisteady
equilibrium contact angle using Young’s equation is 68°
while at t=100 �marked 3 in Fig. 4�b��, the measured appar-
ent contact angle is 58°. The quasisteady contact angle for
the case SE3 is 101° while at t=100 �marked 3 in Fig. 4�c��,
the apparent contact angle is measured to be 98°. However,
due to diffusion as manifested by the elevation of the contact
line region, we expect that the equilibrium contact angle that
�a will approach in the long term can be calculated using
Neumann’s construction �41�, given by 	� ��+	� ��+	� ��=0,
which means that the horizontal and vertical components of
the surface tension forces must sum up to zero. The long
term equilibrium contact angles of 48°, 88°, and 126° for the
three cases, SE1, SE2, and SE3, respectively, have been
computed. We have observed a tendency for the apparent
contact angles to increase in the diffusion-dominated stage
but not simulated far enough to be able to check if the ap-
parent contact angle reaches the long term equilibrium con-
tact angles. There is also a possible shrinkage or expansion
of the spreading liquid which in the long term, the liquid
could disappear without even reaching the equilibrium con-
tact angle given by the Neumann’s construction.

With the OIC, very similar configurations in each SE1,
SE2, and SE3 case until t=100 have been obtained. The
evolution of the drop base radius with respect to time for the
six cases �a combination of EIC and OIC with SE1, SE2, and

SE3� is shown in Fig. 7. The drop spreads the farthest with
SE1, followed by SE2, and the shortest base radius with SE3.
We also observed that at an early stage, both EIC and OIC
have the same base radius and then the OIC case starts to
deviate and spreads longer in time.

(b)

(a)

(c)

FIG. 4. �Color online� The contour plots �level 0.5� of the phase-
field variables for the EIC case with �a� SE1, �b� SE2, and �c� SE3,
at time t=0,8 ,15,100 �marked 0,1,2,3�, respectively.

(b)

(a)

FIG. 5. Cutoff velocity profile of the EIC case with surface
energy SE1 �a� at t=1 with umax=0.1135 and �b� at t=100 with
umax=0.0015.
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FIG. 6. Apparent contact angle vs dimensionless time for EIC
and OIC with surface energy SE1.
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The dynamics of the early stage of wetting can be seen in
Fig. 8. We observe a match between the EIC and OIC cases
and Cox’s theory �42� at a leading order with �� /��=1 and
a constant �=10−2 �see Appendix C�. The limited scatter that
is present in Fig. 8 is attributed to uncertainties in determin-
ing the apparent contact angle. The figure also shows that
whether the initial composition is at equilibrium or far from
equilibrium, the dynamics of the wetting in the early stage is
the same and obeys hydrodynamic laws. In comparison with
the experimental work of Yin et al. �3� on the spreading of
Bi-Sn on pure Bi susbtrates, their results also showed that the
wetting behavior can be well described by hydrodynamic
and molecular kinetic theories developed for inert systems.
However, this is not the case for systems with higher diffu-
sion parameters. Choosing, for example, Pe=103, Pe��

=5,
and Pe��

=5, we observed faster spreading in both EIC and
OIC than the predictions of Cox. This is not surprising since
Cox’s theory assumes no interdiffusion and the spreading is
mainly governed by convective transport. A more obvious
explanation is that diffusive transport significantly plays a
role in every stage when high diffusion parameters are used.

B. Diffusion-dominated stage

Higher diffusion rates, i.e., Pe=103, Pe��
=5, and Pe��

=5 lead to shorter computational time whereas the effects
induced by slow diffusion such as strong concentration gra-
dients, depression of the substrate-liquid interface, elevation
of the contact line region, and possible shrinkage or expan-
sion of the spreading liquid lead to heavier computations.

Figure 9 shows concentration profiles of the A atoms for
EIC ��a�,�c�,�e�� and OIC ��b�,�d�,�f�� with SE1 at times t
=0, 10, and 175, respectively. Figure 9�a� shows the initial
concentration of A for the EIC case and this has a maximum
of 0.5 in the spreading liquid, 0.07 in the substrate, and 0.03
in the medium. For the OIC case, the maximum is 0.73 in the
spreading liquid, 0.07 in the substrate, and 0.03 in the me-
dium. At time t=10, both spread similarly �Figs. 9�c� and
9�d�� regardless of the initial concentration. Also in both
cases, the concentration increases from 0.5 to 0.6 with the

EIC and 0.73 to 0.84 with the OIC and appears at the top of
the drop, where the curvature is strong due to the Gibbs-
Thomson effect. Further spreading is observed in Figs. 9�e�
and 9�f�. This time, striking differences are observed. Apart
from a strong gradient in concentration, the depression of the
substrate liquid is noticeable, which is similar to previous
experimental and numerical studies �2–4�. In both cases, the
concentration evens out and the maximum concentration de-
creases as the top curvature decreases.

On the other hand, Fig. 10 shows the concentration pro-
files of the B atoms for the EIC ��a�,�c�,�e�� and OIC
��b�,�d�,�f��, both with SE1 at times t=0, 10, and 1/5, re-
spectively. The maximum concentration is 0.69, which is in
the substrate in all cases. With EIC �Fig. 10�a��, the concen-
tration of B starts with 0.26 in the spreading liquid compared
to a much smaller value of 0.03 in the OIC case �Fig. 10�b��.
In the succeeding Figs. 10�d� and 10�f�, we see the transport
of B atoms into the spreading liquid while there is no observ-
able change in B concentration with EIC. This leads us to the
conclusion that the transport of atoms across the interface
changes the bulk energies causing the depression of the
substrate-liquid interface.

VI. CONCLUSION

We have presented a multicomponent and multiphase
model of reactive wetting. The governing equations were
derived and nondimensionalized where typical dimensionless
parameters were identified. Mesh adaptivity was imple-
mented with an axisymmetric model.

Successful simulations of reactive wetting were per-
formed revealing two stages in the process which are consis-
tent with experimental studies �2,3,39�. First, the convection-
dominated stage where rapid spreading occurs. A similar
observation has been reported by Voitovich et al. �40� in their
study of isothermal spreading of Cu-Cr alloys on carbon sub-
strates. The dynamics of the rapid spreading for low diffu-
sion parameters is shown to match a hydrodynamic theory by
Cox for spreading liquids, which implies that the dynamic
apparent contact angle is solely dependent on the capillary
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1.5

2

time

R

OIC with SE1
EIC with SE1
OIC with SE2
EIC with SE2
OIC with SE3
EIC with SE3

FIG. 7. The evolution of the drop base radius in time for EIC
and OIC with surface energies SE1, SE2, SE3.
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FIG. 8. Dynamics of the first stage of spreading with EIC and
OIC compared to Cox’s theory with viscosity ratio �� /��=1 �42�.
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number, a result that is consistent with the experimental
study of Yin et al. �3� on the spreading of Bi-Sn alloys on a
pure Bi substrate.

Second, the diffusion-dominated stage where we observed
depression of the substrate-liquid interface �Figs. 9�f� and
10�f��, which is qualitatively similar to the observations
made in experiments of Bi-Sn spreading on pure Bi substrate
�2,3� and to the molecular dynamics simulations of Ag
spreading on Cu �4�. Another interesting observation is the
elevation of the contact line region upon reaching an equi-
librium state �seen more visibly in Fig. 4�c���, which is com-
parable to the experimental observations of Saiz et al. �7,8�
in various systems.

In this paper we have analyzed realistic but still idealized
systems. In the next step we shall apply the new approach to
real systems including thermodynamic and kinetic informa-
tion.
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APPENDIX A: SURFACE TENSION FORCING

Following the derivation by Jacqmin �34� for a binary
system and by Zhou and Powell �43� for a ternary system,
the Gibbs energy changes in time due to convection accord-
ing to

� �G

�t
�

conv
= �

�
	� 
G


��

���

�t
�

conv
+ � 
G


��

���

�t
�

conv
�d� .

Note that

� ���

�t
�

conv
= − � · �u��� ,

FIG. 9. �Color� Concentration profiles of the A atoms for EIC ��a�,�c�,�e�� and OIC ��b�,�d�,�f�� at times t=0, 10, and 175, respectively.
Isolines are plotted in �d� and �f� with A isoconcentrates 0.50, 0.55, 0.60, 0.65, and 0.70 �out to inwards�.
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� ���

�t
�

conv
= − � · �u��� .

Integration by parts combined with the divergence theorem
yield

� �G

�t
�

conv
= − �

�
	 
G


��

� · �u��� +

G


��

� · �u����d�

= − �
��

n · 	 
G


��

u�� +

G


��

u���dS .

The boundary integral vanishes due to boundary conditions.
The rate of change of kinetic energy E due to surface tension
forcing is always opposite to the change in free energy. Then,

−� �G

�t
�

conv
= � �E

�t
�

kinetic
= �

�

uFd� .

Thus the surface tension forcing is given by

F = − �
i

�i � � 
G


�i
� .

APPENDIX B: SURFACE TENSION AND INTERFACE
THICKNESS

The interface thicknesses are defined as


��
2 =

���
2 + ��

2�Vm

4
	�Gm − Gm

�� −� �Gm

�xA
�

�

��xA − xA���

−� �Gm

�xB
�

�

��xB − xB����
max

−1

,


��
2 =

���
2 + ��

2�Vm

4
	�Gm − Gm

� � −� �Gm

�xA
�

�

��xA − xA���

−� �Gm

�xB
�

�

��xB − xB����
max

−1

,

FIG. 10. �Color� Concentration profiles of the B atoms for EIC ��a�,�c�,�e�� and OIC ��b�,�d�,�f�� at times t=0, 10, and 175, respectively.
Isolines are plotted in �d� and �f� with B isoconcentrates 0.10, 0.15, and 0.20 �top to bottom�.
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��
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���
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�
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��xA − xA���

−� �Gm

�xB
�

�
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and the surface tensions
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Nondimensionalization takes the form


̃��
2 =

��̂�
2 + �̂�

2�
4

	
�P���� − 1��xA�A
� + xB�B
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�� + Ṽ ln� xA

1 − xA − xB
�

�

+ P������A
� − �C

�� + P������A
� − �C

�����xA − xA��� − ��B
� − �C
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and the surface tensions,
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The rest have similar forms.

APPENDIX C: COX’S THEORY

Consider two immiscible liquids with viscosity ratio equal to 1. At a leading order in Ca,

g��a� − g��s� = Ca ln��−1� , �C1�

where �a is the apparent dynamic contact angle, �s is the static equilibrium contact angle, � is a very small constant parameter,
and the function g��� is given by

g��� = �
0

� d�

f���
, �C2�

and

f��� =
2 sin �
��2 − sin2 �� + 2���� − �� + sin2 �� + ��� − ��2 − sin2 ���

��2 − sin2 ����� − �� + sin � cos �� + ��� − ��2 − sin2 ���� − sin � cos ��
. �C3�
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